\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (ECE: CBCS) V-Semester Supplementary Examinations, May-2019

Integrated Circuits and Applications

Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part }-\mathrm{A}(10 \times 2=20 \text { Marks })
$$

1. Define slew rate and write its significance.
2. State the requirements of a good instrumentation amplifier?
3. Draw the circuit diagram of Schmitt trigger using 555 Timer.
4. Design a second order Butterworth low pass filter for cutoff frequency of 1.5 KHz .
5. Find the resolution of 8 -bit DAC for full scale output voltage of 10 V .
6. Draw the circuit diagram of 2-bit parallel type ADC.
7. List salient characteristics of digital integrated circuits.
8. What is the drawback of open collector configuration? How it eliminated in Tristate logic?
9. Design a mod-10 Johnson counter.
10. Write the differences between static RAM and Dynamic RAM.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11.a) Describe the operation of ideal integrator with the help of circuit diagram and give its applications.
b) Design an op-amp based application circuit to get an output voltage $\mathrm{V}_{0}=5 \mathrm{~V}_{1}-2 \mathrm{~V}_{2}-3 \mathrm{~V}_{3}$
12.a) Explain the functional diagram of 8038 and also derive the expression for frequency of oscillation.
b) Design a PLL circuit using IC565 for a free running frequency of 400 KHz and capture range of $\pm 10 \mathrm{KHz}$ with a supply voitage of $\pm 6 \mathrm{~V}$.
13.a) Describe the working of Dual Slope ADC with a neat circuit diagram.
b) For 4-bit Dual slope $A D C$, consider $R=100 \mathrm{~K} \Omega, C=1 \mu \mathrm{~F}$, clock frequency is $10 \mathrm{KHz}, \mathrm{V}_{\text {ref }}=-$ 6 V and $\mathrm{V}_{\text {in }}=3 \mathrm{~V}$. Determine the output count and conversion time after the conversion is completed
14.a) Draw the circuit diagram of three input CMOS NAND gate and explain its operation.
b) Design a BCD adder using IC 7483.
15.a) Describe the principle of operation of parallel in serial out shift register and give its applications.
b) Implement the logic function $\mathrm{F}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum(1,3,5,7)$ and $\mathrm{F}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum(0,2,3,7)$ using PAL and PLA
16.a) Design a 5 V voltage regulator using IC723 for load current of 600 mA under short circuit condition.
b) Design a Narrow BSF to meet the following specifications: $\mathrm{f}_{\mathrm{c}}=2 \mathrm{KHz}, \mathrm{Q}=20$ and $\mathrm{A}_{F}=10$.
17. Answer any two of the following:
a) Determine the frequency at the output of the following circuit.

b) Explain the working of 3-bit R-2R ladder type DAC.
c) Compare the key characteristics of TTL, ECL and CMOS logic families.

